- B) Microscopia elettronica a scansione (SEM).
  - 1B) Procedura per campionamento e analisi:
    - a) Filtri di prelievo: membrana in policarbonato (NPF) da 0.8 jun di porosità, 25 mm di diametro (per il deposito usare la faccia piu lucida).

(Nota: Per ridu<mark>rre la carica c</mark>lettrostatica presente nelle membrane NPF, può essere utile ricoprirle preventivamente con uno strato di carbone, sotto vuoto, da ambedue le parti. Tale strato dovrebbe avere uno spessore non superiore a circa 100 nm.).

- b) Supporto cellulosico: membrane in esteri misti di cellulosa (o nitrato) da 3-8 µm di porosità, 25 mm di diametro.
- c) Portafiltri: metallici con estensione metallica in materiale conduttivo o costruiti interamente in materiali conduttivi.
- d) Flusso di prelievo: il flusso deve essere tale da assicurare una velocità lineare sulla faccia esposta della membrana pari a 0.35 m/sec ± 10%. La velocità lineare minima di 0.35 m/sec è necessaria per campionamenti che avvengono in presenza di elevata velocità dell'aria circostante il punto di prelievo (es. aria aperta o forti correnti d'aria).

Non è indispensabile in luoghi chiusi dove la velocità dell'aria è molto ridotta. In tal caso i parametri condizionanti sono il tempo di prelievo e l'intasamento del filtro, restando fisso il volume totale, di ca. 30001.

Con filtri (o membrane) aventi diametro 25 mm e diametro effettivo di prelievo compreso tra 20 e 22 mm, il flusso di prelievo deve essere compreso tra 6 e 91/min ± 10% e mantenuto costante durante il tempo di prelievo. Il flusso di prelievo può essere superiore per ridurre i tempi di campionamento, compatibilmente con l'effetto di intasamento della membrana. Quando tale effetto faccia abbassare il flusso al di sotto di circa 61/min, è opportuno interrompere il campionamento, annotando il volume di aria campionato (vedi il successivo punto).

e) Volume di aria da prelevare: il metodo prevede un volume minimo di campionamento pari a circa 3000-litri su di un'area effettiva di circa 315 mm² (diametro effettivo di ca. 20 mm).

Se la portata di prelievo è di circa 8 l/min, il tempo necessario sarà di circa 6 orc. Usando portate maggiori si può ridurre il tempo di campionamento (vedi punto d).

Se non è possibile prelevare 3000 litri su di una stessa membrana, a causa dell'eccessiva perdita di carico o dell'eccessivo deposito di particelle, si possono prelevare 2 campioni da circa 1500 litri ciascuno e quindi considerare i risultati analitici di questi sommandoli come se fossero riferiti ad un unico campione di ca. 3000 litri. Tale procedura può essere applicata anche a campioni prelevati con flussi di campionamento più elevati.

- f) Preparazione dei campioni: si prepara una basetta sul portacampioni o stub (normalmente di Alluminio) spalmando strati successivi di sospensione di grafite. Quando l'ultimo strato è ancora umido, si stende una porzione del filtro di prelievo (NPF), ritagliata con attenzione, evitando la caduta della polvere ivi depositata (per un portacampioni tipo Cambridge o Philips in Al è sull'iciente ritagliare un quarto del filtro di prelievo). Durante la deposizione della porzione di filtro sulla grafite occorre evitare quanto più possibile la formazione di bolle d'aria. La preparazione si completa saldando, ove necessario, alcuni punti dei bordi della porzione di filtro con grafite, usando una punta sottile (ad esempio bastone ini di legno appuntiti). Successivamente a questa fase il campione sullo stub viene ricoperto con uno strato di oro di circa 25-50 nm, in uno «sputter coater». In caso di necessità di eseguire la microanalisi a dispersione di energia (EDXA) con maggiore accuratezza è opportuno eseguire il meoprimento con carbone per uno strato di ca. 100 nm.
- g). Condizioni strumentali: le condizioni di lavoro al SEM possono essere diverse per le differenti marche di microscopi, tuttavia esse devono essere tali da permettere la individuazione di fibre aventi almeno 0.2 micrometri di diametro.
  - I parametri che influenzano la visibilità o la microanalisi per l'identificazione delle fibre sono:
    - il voltaggio di accelerazione (VA) risulta soddisfacente un VA compreso tra 20 e 30 KV.

l'angolo di tilt: quando viene usato un angolo elevato è necessario operare una correzione per la determinazione della lunghezza delle fibre; moltre, in questo caso si possono avere problemi di messa a fuoco.

Come raccomandazione generale occorre aggiustare l'angolo di tilt in modo da avere una buona resa microanalitica [ $S \ge 3\sqrt{B}$ , dove: S (segnale) = P (aftezza del picco) - B (aftezza del fondo)] e una buona visibilità per le fibre più sottili (intorno a 0.2 microns).

La distanza di lavoro: essa influenza sia la resa microanalitica, che la visibilità. In genere i SEM sono già ottimizzati rispetto a questo parametro.

Diametro del raggio elettronico: un diametro più elevato determina un conteggio di raggi X maggiore, una buona intensità del segnale, una risoluzione dell'immagine scarsa. Occorre scegliere le condizioni di compromesso più soddisfaccnii.

L'allineamento del raggio, l'astigmatismo, la apertura, il contrasto e la luminosità dello schermo, devono essere impostate sperimentalmente per assicurare una adeguata visibilità.

Da notare che le dimensioni dello schermo, ovvero del campo di osservazione, possono essere diverse usando il modo «RASTER» oppure «TV».