COMBINAZIONI E COEFFICIENTI MOLTIPLICATIVI DELLE SINGOLE AZIONI PER I DIVERSI TIPI DI VERIFICHE

	Azione gruppo	g _i	g ₂	g ₃	ε ₁ (***)	€2	€3	€4	qı	q ₂	q ₃	q 4	q ₅	96	q ₇	q ₈	q,
Metodo ten. ammissibili	A I	ı	1	1 (β1)	i	1	1	1	0	0	0	0	1	0	1	0	1
	A II	I	1	1 (β,)	1	1	1	1	1	1	0	0	0,6	0	1	1	1
	A III	1	1	1 (ß ₁)	1	1	1	1	ı	1	1	0	0,2	0	1	1	1
	A iV	1	1	1 (β ₁)	1	1	1	1	1	1	0	ı	0,2	0	1	1	1
	A V	1	1	1 (β ₁)	1	1	1	1	0	0	0	0	0	1	0	0	0
Stati limite di esercizio fessurazione	,F1	1	ī	1 (β1)	i	1	1	1	0	0	0	0	0,4	0	0	0	0
	FII	1	1	1 (\$\beta_1)	1	1	1	1	ψl	ψ i	0	0	0	0	0	0	0
	FIII	1	1	1 (\$\beta_1)	ı	1	1	i	ψ 2	ψ 2	0	0	0	0	0	0	0
	Per ulterior	i stati limit	te di eserci	zio valgono	A I, A II	, A III, <i>i</i>	A IV										

Stati limite ultimi	បរ	1,5 (1,0)	1,5 (1,0)	1,5 (β ₂)	1,2 (0,85)	1,2 (0)	1,2 (0)	1,2 (0)	0	0	0	0	1,5		1,5	1,5	(**)
	UII	1,5 (1,0)	1,5 (1,0)	1,5 (β ₂)	1,2 (0,85)	1,2 (0)	1,2 (0)	1,2 (0)	1,5	1,5	0	0	0,9		1,5	1,5	
	U III	1,5 (1,0)	1,5 (1,0)	1,5 (β ₂)	1,2 (0,85)	1,2 (0)	1,2 (0)	1,2 (0)	1,5	1,5	1,5	0	0,3		1,5	1,5	
	ע וע	1,5 (1,0)	1,5 (1,0)	1,5 (β ₂)	1,2 (0,85)	1,2 (0)	1,2 (0)	1,2 (0)	1,5	1,5	0	1,5	0,3	-	1,5	1,5	

 $\beta_1 = 0.7$ per spinta delle terre

 $\beta_2 = 0.5$ per spinta delle terre

 $\beta_1 = 0$ per azioni spingenti di origine idraulica

 $\beta_2 = 0$ per azioni spingenti di origine idraulica

- (*) 0,4 per le verifiche agli stati limite di esercizio
- (**) da valutare caso per caso
- (***) Operando con il metodo delle tensioni ammissibili, si rammenta l'obbligo di effettuare la verifica a rottura della sezione

Per le singole opere di luce maggiore a 300 m è possibile modificare i coefficienti indicati in tabella previa autorizzazione del Servizio tecnico centrale del Ministero dei lavori pubblici.